聚類分析又稱群分析,它是用來研究樣品分類問題的統(tǒng)計分析方法,同時也是一種重要的數(shù)據(jù)挖掘算法。聚類分析是由若干模式組成的,通常,模式是一個度量的向量,聚類分析以相似性為基礎(chǔ),在一個聚類中的模式之間比不在同一聚類中的模式之間具有更多的相似性。
對于聚類算法,大多數(shù)用SPSS軟件
實現(xiàn),通常導(dǎo)入數(shù)據(jù),并且選擇聚類方法即可實現(xiàn),本文借用MATLAB軟件
,基于14種不同的聚類分析方法,實現(xiàn)樣品聚類。
14種聚類方法
(1)最長距離法
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
D=pdist(X,'euclid');
M=squareform(D);
Z=linkage(D,'complete');
H=dendrogram(Z);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);
(2) 最短距離法
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
D=pdist(X,'euclid');
M=squareform(D);
Z=linkage(D,'single')
;H=dendrogram(Z);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,'cutoff',0.8);
(3)綜合聚類子程序
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
T=clusterdata(X,0.8);
Re=find(T=5)
(4)重心法&標準歐氏距離
S=['福岡';'合肥';'武漢';'長沙';'桂林';'溫州';'成都'];
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
D=pdist(X,'seuclid');
M=squareform(D);
Z=linkage(D,'centroid');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);
(5)重心法&歐氏距離平方
S=['福岡';'合肥';'武漢';'長沙';'桂林';'溫州';'成都'];
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
D=pdist(X,'euclid');
D2=D.^2;
M=squareform(D2);
Z=linkage(D2,'centroid');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D2);
T=cluster(Z,3);
(6)重心法&精度加權(quán)距離
S=['福岡';'合肥';'武漢';'長沙';'桂林';'溫州';'成都'];
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
[n,m]=size(X);
stdx=std(X);
X2=X./stdx(ones(n,1),:);
D=pdist(X2,'euclid');
M=squareform(D);
Z=linkage(D,'centroid');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);
(7)最短距離法&基于主成分的標準歐式距離
S=['福岡';'合肥';'武漢';'長沙';'桂林';'溫州';'成都'];
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
[E,score,eigen,T]=princomp(X);
D=pdist(score,'seuclid');
M=squareform(D);
Z=linkage(D,'single');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);
(8)平均法&標準歐式距離
S=['福岡';'合肥';'武漢';'長沙';'桂林';'溫州';'成都'];
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
D=pdist(X,'seuclid');
M=squareform(D);
Z=linkage(D,'average');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);
(9)權(quán)重法&標準歐式距離
S=['福岡';'合肥';'武漢';'長沙';'桂林';'溫州';'成都'];
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
D=pdist(X,'seuclid');
M=squareform(D);
Z=linkage(D,'weighted');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);
(10)最短距離法&馬氏距離
S=['福岡';'合肥';'武漢';'長沙';'桂林';'溫州';'成都'];
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
D=pdist(X,'mahal');M=squareform(D);Z=linkage(D,'single');H=dendrogram(Z,'labels',S);xlabel('City');ylabel('Scale');C=cophenet(Z,D);T=cluster(Z,3);
(11)重心法&標準化數(shù)據(jù)的的歐式距離
S=['福岡';'合肥';'武漢';'長沙';'桂林';'溫州';'成都'];
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
[n,m]=size(X);
mv=mean(X);
st=std(X);
x=(X-mv(ones(n,1),:))./st(ones(n,1),:);
D=pdist(X,'euclid');
M=squareform(D);
Z=linkage(D,'centroid');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);
(12)最長距離法&歐式距離
S=['福岡';'合肥';'武漢';'長沙';'桂林';'溫州';'成都'];
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
D=pdist(X,'euclid');
M=squareform(D);
Z=linkage(D,'complete');
[H tPerm]=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);
(13)平均法&相似系數(shù)
S=['福岡';'合肥';'武漢';'長沙';'桂林';'溫州';'成都'];
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
D=pdist(X,'cosine');
M=squareform(D);
Z=linkage(D,'centroid');
T=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);
(14)最短距離法&基于主成分的標準歐式距離
S=['福岡';'合肥';'武漢';'長沙';'桂林';'溫州';'成都'];
X=[16.21492 2000 -8.2 6.2;
15.7 970 2209 -20.6 1.9;
16.3 1260 2085 -17.3 2.8;
17.2 14221726 -9.5 4.6;
18.8 1874 1709 -4.9 8.0;
17.9 1698 1848 -4.5 7.5;
16.3 976 1239-4.6 5.6];
[E,score,eigen,T]=princomp(X);
PCA=[score(:,1),score(:,2)];
D=pdist(PCA,'seuclid');
M=squareform(D);
Z=linkage(D,'single');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);
(推薦教程:MATLAB 教程)
文章來源:www.toutiao.com/a6863649930347545091/
以上就是W3Cschool編程獅
關(guān)于 MATLAB基于14種聚類方法的分析 的相關(guān)介紹了,希望對大家有所幫助。