也許其他機(jī)器學(xué)習(xí)的項(xiàng)目比較難找數(shù)據(jù)集,但對(duì)于手寫數(shù)字的數(shù)據(jù)集,那是現(xiàn)成的(類似的手寫數(shù)字的數(shù)據(jù)集在互聯(lián)網(wǎng)上很多)。今天我們就來(lái)介紹一下如何使用pytorch來(lái)實(shí)現(xiàn)一個(gè)圖像十倍項(xiàng)目——手寫數(shù)字識(shí)別的實(shí)現(xiàn)。
使用了兩個(gè)卷積層加上兩個(gè)全連接層實(shí)現(xiàn)
本來(lái)打算從頭手撕的,但是調(diào)試太耗時(shí)間了,改天有時(shí)間在從頭寫一份
詳細(xì)過程看代碼注釋,參考了下一個(gè)博主的文章,但是鏈接沒注意關(guān)了找不到了,博主看到了聯(lián)系下我,我加上
代碼相關(guān)的問題可以評(píng)論私聊,也可以翻看博客里的文章,部分有詳細(xì)解釋
Python實(shí)現(xiàn)代碼:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import torchvision
from torch.autograd import Variable
from torch.utils.data import DataLoader
import cv2
# 下載訓(xùn)練集
train_dataset = datasets.MNIST(root='E:mnist',
train=True,
transform=transforms.ToTensor(),
download=True)
# 下載測(cè)試集
test_dataset = datasets.MNIST(root='E:mnist',
train=False,
transform=transforms.ToTensor(),
download=True)
# dataset 參數(shù)用于指定我們載入的數(shù)據(jù)集名稱
# batch_size參數(shù)設(shè)置了每個(gè)包中的圖片數(shù)據(jù)個(gè)數(shù)
# 在裝載的過程會(huì)將數(shù)據(jù)隨機(jī)打亂順序并進(jìn)打包
batch_size = 64
# 建立一個(gè)數(shù)據(jù)迭代器
# 裝載訓(xùn)練集
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
# 裝載測(cè)試集
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True)
# 卷積層使用 torch.nn.Conv2d
# 激活層使用 torch.nn.ReLU
# 池化層使用 torch.nn.MaxPool2d
# 全連接層使用 torch.nn.Linear
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(1, 6, 3, 1, 2),
nn.ReLU(), nn.MaxPool2d(2, 2))
self.conv2 = nn.Sequential(nn.Conv2d(6, 16, 5), nn.ReLU(),
nn.MaxPool2d(2, 2))
self.fc1 = nn.Sequential(nn.Linear(16 * 5 * 5, 120),
nn.BatchNorm1d(120), nn.ReLU())
self.fc2 = nn.Sequential(
nn.Linear(120, 84),
nn.BatchNorm1d(84),
nn.ReLU(),
nn.Linear(84, 10))
# 最后的結(jié)果一定要變?yōu)?10,因?yàn)閿?shù)字的選項(xiàng)是 0 ~ 9
def forward(self, x):
x = self.conv1(x)
# print("1:", x.shape)
# 1: torch.Size([64, 6, 30, 30])
# max pooling
# 1: torch.Size([64, 6, 15, 15])
x = self.conv2(x)
# print("2:", x.shape)
# 2: torch.Size([64, 16, 5, 5])
# 對(duì)參數(shù)實(shí)現(xiàn)扁平化
x = x.view(x.size()[0], -1)
x = self.fc1(x)
x = self.fc2(x)
return x
def test_image_data(images, labels):
# 初始輸出為一段數(shù)字圖像序列
# 將一段圖像序列整合到一張圖片上 (make_grid會(huì)默認(rèn)將圖片變成三通道,默認(rèn)值為0)
# images: torch.Size([64, 1, 28, 28])
img = torchvision.utils.make_grid(images)
# img: torch.Size([3, 242, 242])
# 將通道維度置在第三個(gè)維度
img = img.numpy().transpose(1, 2, 0)
# img: torch.Size([242, 242, 3])
# 減小圖像對(duì)比度
std = [0.5, 0.5, 0.5]
mean = [0.5, 0.5, 0.5]
img = img * std + mean
# print(labels)
cv2.imshow('win2', img)
key_pressed = cv2.waitKey(0)
# 初始化設(shè)備信息
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 學(xué)習(xí)速率
LR = 0.001
# 初始化網(wǎng)絡(luò)
net = LeNet().to(device)
# 損失函數(shù)使用交叉熵
criterion = nn.CrossEntropyLoss()
# 優(yōu)化函數(shù)使用 Adam 自適應(yīng)優(yōu)化算法
optimizer = optim.Adam(net.parameters(), lr=LR, )
epoch = 1
if __name__ == '__main__':
for epoch in range(epoch):
print("GPU:", torch.cuda.is_available())
sum_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data
# print(inputs.shape)
# torch.Size([64, 1, 28, 28])
# 將內(nèi)存中的數(shù)據(jù)復(fù)制到gpu顯存中去
inputs, labels = Variable(inputs).cuda(), Variable(labels).cuda()
# 將梯度歸零
optimizer.zero_grad()
# 將數(shù)據(jù)傳入網(wǎng)絡(luò)進(jìn)行前向運(yùn)算
outputs = net(inputs)
# 得到損失函數(shù)
loss = criterion(outputs, labels)
# 反向傳播
loss.backward()
# 通過梯度做一步參數(shù)更新
optimizer.step()
# print(loss)
sum_loss += loss.item()
if i % 100 == 99:
print('[%d,%d] loss:%.03f' % (epoch + 1, i + 1, sum_loss / 100))
sum_loss = 0.0
# 將模型變換為測(cè)試模式
net.eval()
correct = 0
total = 0
for data_test in test_loader:
_images, _labels = data_test
# 將內(nèi)存中的數(shù)據(jù)復(fù)制到gpu顯存中去
images, labels = Variable(_images).cuda(), Variable(_labels).cuda()
# 圖像預(yù)測(cè)結(jié)果
output_test = net(images)
# torch.Size([64, 10])
# 從每行中找到最大預(yù)測(cè)索引
_, predicted = torch.max(output_test, 1)
# 圖像可視化
# print("predicted:", predicted)
# test_image_data(_images, _labels)
# 預(yù)測(cè)數(shù)據(jù)的數(shù)量
total += labels.size(0)
# 預(yù)測(cè)正確的數(shù)量
correct += (predicted == labels).sum()
print("correct1: ", correct)
print("Test acc: {0}".format(correct.item() / total))
測(cè)試結(jié)果:
可以通過調(diào)用test_image_data函數(shù)查看測(cè)試圖片
可以看到最后預(yù)測(cè)的準(zhǔn)確度可以達(dá)到98%
到此這篇Pytorch實(shí)現(xiàn)圖像識(shí)別之?dāng)?shù)字識(shí)別的文章就介紹到這了,更多Pytorc 圖像識(shí)別內(nèi)容請(qǐng)搜索W3Cschool以前的文章或繼續(xù)瀏覽下面的相關(guān)文章。