App下載

python怎么實現(xiàn)dbscan算法

猿友 2021-07-21 11:10:13 瀏覽數(shù) (2895)
反饋

對于學習機器學習和數(shù)據(jù)挖掘數(shù)據(jù)分析的小伙伴們來說,dbscan算法一定不會陌生。dbscan算法是一種基于密度的空間聚類算法,他可以快熟處理聚類同時有效處理噪聲點。接下來我們就來使用python實現(xiàn)dbscan算法,來了解一下這個算法到底怎么樣吧!

DBSCAN 算法是一種基于密度的空間聚類算法。該算法利用基于密度的聚類的概念,即要求聚類空間中的一定區(qū)域內(nèi)所包含對象(點或其它空間對象)的數(shù)目不小于某一給定閥值。DBSCAN 算法的顯著優(yōu)點是聚類速度快且能夠有效處理噪聲點和發(fā)現(xiàn)任意形狀的空間聚類。但是由于它直接對整個數(shù)據(jù)庫進行操作且進行聚類時使用了一個全局性的表征密度的參數(shù),因此也具有兩個比較明顯的弱點:

1. 當數(shù)據(jù)量增大時,要求較大的內(nèi)存支持 I/0 消耗也很大;

2. 當空間聚類的密度不均勻、聚類間距離相差很大時,聚類質(zhì)量較差。

DBSCAN算法的聚類過程

  DBSCAN算法基于一個事實:一個聚類可以由其中的任何核心對象唯一確定。等價可以表述為: 任一滿足核心對象條件的數(shù)據(jù)對象p,數(shù)據(jù)庫D中所有從p密度可達的數(shù)據(jù)對象所組成的集合構(gòu)成了一個完整的聚類C,且p屬于C。

先上結(jié)果

運行結(jié)果

大致流程

先根據(jù)給定的半徑 r 確定中心點,也就是這類點在半徑r內(nèi)包含的點數(shù)量 n 大于我們的要求(n>=minPionts)
然后遍歷所有的中心點,將互相可通達的中心點與其包括的點分為一組
全部分完組之后,沒有被納入任何一組的點就是離群點啦!

導入相關(guān)依賴

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

求點跟點之間距離(歐氏距離)

def cuircl(pointA,pointB):
    distance = np.sqrt(np.sum(np.power(pointA - pointB,2)))
    return distance

求臨時簇,即確定所有的中心點,非中心點

def firstCluster(dataSets,r,include):
    cluster = []
    m = np.shape(dataSets)[0]
    ungrouped = np.array([i for i in range (m)])
    for i in range (m):
        tempCluster = []
        #第一位存儲中心點簇
        tempCluster.append(i)
        for j in range (m):
            if (cuircl(dataSets[i,:],dataSets[j,:]) < r and i != j ):
                tempCluster.append(j)
        tempCluster = np.mat(np.array(tempCluster))
        if (np.size(tempCluster)) >= include:
            cluster.append(np.array(tempCluster).flatten())
    #返回的是List
    center=[]
    n = np.shape(cluster)[0]
    for k in range (n):
        center.append(cluster[k][0])
    #其他的就是非中心點啦
    ungrouped = np.delete(ungrouped,center)
    #ungrouped為非中心點
    return cluster,center,ungrouped

將所有中心點遍歷并進行聚集

def clusterGrouped(tempcluster,centers):
    m = np.shape(tempcluster)[0]
    group = []
    #對應(yīng)點是否遍歷過
    position = np.ones(m)
    unvisited = []
    #未遍歷點
    unvisited.extend(centers)
    #所有點均遍歷完畢
    for i  in range (len(position)):
        coreNeihbor = []
        result = []
        #刪除第一個
        #刨去自己的鄰居結(jié)點,這一段就類似于深度遍歷
        if position[i]:
        #將鄰結(jié)點填入
            coreNeihbor.extend(list(tempcluster[i][:]))
            position[i] = 0
            temp = coreNeihbor
        #按照深度遍歷遍歷完所有可達點
        #遍歷完所有的鄰居結(jié)點
            while len(coreNeihbor) > 0 :
                #選擇當前點
                present = coreNeihbor[0]
                for j in range(len(position)):
                    #如果沒有訪問過
                    if position[j] == 1:
                        same = []
                        #求所有的可達點
                        if (present in tempcluster[j]):
                            cluster = tempcluster[j].tolist()
                            diff = []
                            for x in cluster:
                                if x not in temp:
                                    #確保沒有重復點
                                    diff.append(x)
                            temp.extend(diff)
                            position[j] = 0
                # 刪掉當前點
                del coreNeihbor[0]
                result.extend(temp)
            group.append(list(set(result)))
        i +=1
    return group

核心算法完畢!

生成同心圓類型的隨機數(shù)據(jù)進行測試

#生成非凸數(shù)據(jù) factor表示內(nèi)外圈距離比
X,Y1 = datasets.make_circles(n_samples = 1500, factor = .4, noise = .07)


#參數(shù)選擇,0.1為圓半徑,6為判定中心點所要求的點個數(shù),生成分類結(jié)果
tempcluster,center,ungrouped = firstCluster(X,0.1,6)
group = clusterGrouped(tempcluster,center)


#以下是分類后對數(shù)據(jù)進行進一步處理
num = len(group)
voice = list(ungrouped)
Y = []
for i in range (num):
   Y.append(X[group[i]])
flat = []
for i in range(num):
    flat.extend(group[i])
diff = [x for x in voice if x not in flat]
Y.append(X[diff])
Y = np.mat(np.array(Y))

繪圖~

color = ['red','blue','green','black','pink','orange']
for i in range(num):
    plt.scatter(Y[0,i][:,0],Y[0,i][:,1],c=color[i])
plt.scatter(Y[0,-1][:,0],Y[0,-1][:,1],c = 'purple')
plt.show()

結(jié)果

紫色點就是離散點

運行結(jié)果

到此這篇python實現(xiàn)dbscan算發(fā)的文章就介紹到這了,更多數(shù)據(jù)挖掘和機器學習的內(nèi)容請搜索W3Cschool以前的文章或繼續(xù)瀏覽下面的相關(guān)文章。



0 人點贊