App下載

PyTorch中eval和no_grad有什么關系?

酒后表演藝術家 2021-08-20 15:13:16 瀏覽數(shù) (3883)
反饋

在進行evaluate的時候,我們需要同時使用到eval和no_grad這兩個函數(shù),有些小伙伴就會問了,這兩個函數(shù)有什么功能呢,他們又有什么區(qū)別呢,今天小編就來介紹這兩個函數(shù)的區(qū)別。

首先這兩者有著本質上區(qū)別

model.eval()是用來告知model內的各個layer采取eval模式工作。這個操作主要是應對諸如dropout和batchnorm這些在訓練模式下需要采取不同操作的特殊layer。訓練和測試的時候都可以開啟。

torch.no_grad()則是告知自動求導引擎不要進行求導操作。這個操作的意義在于加速計算、節(jié)約內存。但是由于沒有gradient,也就沒有辦法進行backward。所以只能在測試的時候開啟。

所以在evaluate的時候,需要同時使用兩者。

model = ...
dataset = ...
loss_fun = ...

# training
lr=0.001
model.train()
for x,y in dataset:
 model.zero_grad()
 p = model(x)
 l = loss_fun(p, y)
 l.backward()
 for p in model.parameters():
  p.data -= lr*p.grad
 
# evaluating
sum_loss = 0.0
model.eval()
with torch.no_grad():
 for x,y in dataset:
  p = model(x)
  l = loss_fun(p, y)
  sum_loss += l
print('total loss:', sum_loss)

另外no_grad還可以作為函數(shù)是修飾符來用,從而簡化代碼。

def train(model, dataset, loss_fun, lr=0.001):
 model.train()
 for x,y in dataset:
  model.zero_grad()
  p = model(x)
  l = loss_fun(p, y)
  l.backward()
  for p in model.parameters():
   p.data -= lr*p.grad
 
@torch.no_grad()
def test(model, dataset, loss_fun):
 sum_loss = 0.0
 model.eval()
 for x,y in dataset:
  p = model(x)
  l = loss_fun(p, y)
  sum_loss += l
 return sum_loss

# main block:
model = ...
dataset = ...
loss_fun = ...

# training
train()
# test
sum_loss = test()
print('total loss:', sum_loss)

補充:pytorch中model.train、model.eval以及torch.no_grad的用法

1、model.train()

啟用 BatchNormalization 和 Dropout

model.train() 讓model變成訓練模式,此時 dropout和batch normalization的操作在訓練起到防止網(wǎng)絡過擬合的問題

2、model.eval()

不啟用 BatchNormalization 和 Dropout

model.eval(),pytorch會自動把BN和DropOut固定住,而用訓練好的值。不然的話,一旦test的batch_size過小,很容易就會被BN層導致所生成圖片顏色失真極大

訓練完train樣本后,生成的模型model要用來測試樣本。在model(test)之前,需要加上model.eval(),否則的話,有輸入數(shù)據(jù),即使不訓練,它也會改變權值。這是model中含有batch normalization層所帶來的的性質。

對于在訓練和測試時為什么要這樣做,可以從下面兩段話理解:

在訓練的時候, 會計算一個batch內的mean 和var, 但是因為是小batch小batch的訓練的,所以會采用加權或者動量的形式來將每個batch的 mean和var來累加起來,也就是說再算當前的batch的時候,其實當前的權重只是占了0.1, 之前所有訓練過的占了0.9的權重,這樣做的好處是不至于因為某一個batch太過奇葩而導致的訓練不穩(wěn)定。

好,現(xiàn)在假設訓練完成了, 那么在整個訓練集上面也得到了一個最終的”mean 和var”, BN層里面的參數(shù)也學習完了(如果指定學習的話),而現(xiàn)在需要測試了,測試的時候往往會一張圖一張圖的去測,這時候沒有batch而言了,對單獨一個數(shù)據(jù)做 mean和var是沒有意義的, 那么怎么辦,實際上在測試的時候BN里面用的mean和var就是訓練結束后的mean_final 和 val_final. 也可說是在測試的時候BN就是一個變換。所以在用pytorch的時候要注意這一點,在訓練之前要有model.train() 來告訴網(wǎng)絡現(xiàn)在開啟了訓練模式,在eval的時候要用”model.eval()”, 用來告訴網(wǎng)絡現(xiàn)在要進入測試模式了.因為這兩種模式下BN的作用是不同的。

3、torch.no_grad()

這條語句的作用是:在測試時不進行梯度的計算,這樣可以在測試時有效減小顯存的占用,以免發(fā)生顯存溢出(OOM)。

這條語句通常加在網(wǎng)絡預測的那條代碼上。

4、pytorch中model.eval()和“with torch.no_grad()區(qū)別

兩者區(qū)別

在PyTorch中進行validation時,會使用model.eval()切換到測試模式,在該模式下,

主要用于通知dropout層和batchnorm層在train和val模式間切換

在train模式下,dropout網(wǎng)絡層會按照設定的參數(shù)p設置保留激活單元的概率(保留概率=p); batchnorm層會繼續(xù)計算數(shù)據(jù)的mean和var等參數(shù)并更新。

在val模式下,dropout層會讓所有的激活單元都通過,而batchnorm層會停止計算和更新mean和var,直接使用在訓練階段已經(jīng)學出的mean和var值。

該模式不會影響各層的gradient計算行為,即gradient計算和存儲與training模式一樣,只是不進行反傳(backprobagation)

而with torch.zero_grad()則主要是用于停止autograd模塊的工作,以起到加速和節(jié)省顯存的作用,具體行為就是停止gradient計算,從而節(jié)省了GPU算力和顯存,但是并不會影響dropout和batchnorm層的行為。

使用場景

如果不在意顯存大小和計算時間的話,僅僅使用model.eval()已足夠得到正確的validation的結果;而with torch.zero_grad()則是更進一步加速和節(jié)省gpu空間(因為不用計算和存儲gradient),從而可以更快計算,也可以跑更大的batch來測試。

以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持W3Cschool。如有錯誤或未考慮完全的地方,望不吝賜教。


0 人點贊