很多小伙伴在求職的時候沒有辦法在短時間內看完很多的職位信息數據,可能就會因此錯過一些好的崗位。今天小編帶來一個python爬蟲實戰(zhàn)項目(附帶數據分析)是有關于招聘崗位數據爬取的,那么接下來就讓我們來看看python怎么爬取招聘崗位數據吧。
本篇文章URL已作了特別處理,所以代碼不能直接使用。爬蟲學習的是思路而不是代碼的復制,希望小伙伴們能自行根據思路寫出自己的爬蟲代碼!
另外:惡意爬取別人的網站數據是違法行為,在學習的過程中請注意爬取力度。
一、數據爬取的代碼
#encoding='utf-8'
from selenium import webdriver
import time
import re
import pandas as pd
import os
def close_windows():
#如果有登錄彈窗,就關閉
try:
time.sleep(0.5)
if dr.find_element_by_class_name("jconfirm").find_element_by_class_name("closeIcon"):
dr.find_element_by_class_name("jconfirm").find_element_by_class_name("closeIcon").click()
except BaseException as e:
print('close_windows,沒有彈窗',e)
def get_current_region_job(k_index):
flag = 0
# page_num_set=0#每區(qū)獲取多少條數據,對30取整
df_empty = pd.DataFrame(columns=['崗位', '地點', '薪資', '工作經驗', '學歷', '公司', '技能'])
while (flag == 0):
# while (page_num_set<151)&(flag == 0):#每次只能獲取150條信息
time.sleep(0.5)
close_windows()
job_list = dr.find_elements_by_class_name("job-primary")
for job in job_list:#獲取當前頁的職位30條
job_name = job.find_element_by_class_name("job-name").text
# print(job_name)
job_area = job.find_element_by_class_name("job-area").text
salary = job.find_element_by_class_name("red").get_attribute("textContent") # 獲取薪資
# salary_raw = job.find_element_by_class_name("red").get_attribute("textContent") # 獲取薪資
# salary_split = salary_raw.split('·') # 根據·分割
# salary = salary_split[0] # 只取薪資,去掉多少薪
# if re.search(r'天', salary):
# continue
experience_education = job.find_element_by_class_name("job-limit").find_element_by_tag_name(
"p").get_attribute("innerHTML")
# experience_education_raw = '1-3年<em class="vline"></em>本科'
experience_education_raw = experience_education
split_str = re.search(r'[a-zA-Z =<>/"]{23}', experience_education_raw) # 搜索分割字符串<em class="vline"></em>
# print(split_str)
experience_education_replace = re.sub(r'[a-zA-Z =<>/"]{23}', ",", experience_education_raw) # 分割字符串替換為逗號
# print(experience_education_replace)
experience_education_list = experience_education_replace.split(',') # 根據逗號分割
# print('experience_education_list:',experience_education_list)
if len(experience_education_list)!=2:
print('experience_education_list不是2個,跳過該數據',experience_education_list)
break
experience = experience_education_list[0]
education = experience_education_list[1]
# print(experience)
# print(education)
company = job.find_element_by_class_name("company-text").find_element_by_class_name("name").text
skill_list = job.find_element_by_class_name("tags").find_elements_by_class_name("tag-item")
skill = []
for skill_i in skill_list:
skill_i_text = skill_i.text
if len(skill_i_text) == 0:
continue
skill.append(skill_i_text)
# print(job_name)
# print(skill)
df_empty.loc[k_index, :] = [job_name, job_area, salary, experience, education, company, skill]
k_index = k_index + 1
# page_num_set=page_num_set+1
print("已經讀取數據{}條".format(k_index))
close_windows()
try:#點擊下一頁
cur_page_num=dr.find_element_by_class_name("page").find_element_by_class_name("cur").text
# print('cur_page_num',cur_page_num)
#點擊下一頁
element = dr.find_element_by_class_name("page").find_element_by_class_name("next")
dr.execute_script("arguments[0].click();", element)
time.sleep(1)
# print('點擊下一頁')
new_page_num=dr.find_element_by_class_name("page").find_element_by_class_name("cur").text
# print('new_page_num',new_page_num)
if cur_page_num==new_page_num:
flag = 1
break
except BaseException as e:
print('點擊下一頁錯誤',e)
break
print(df_empty)
if os.path.exists("數據.csv"):#存在追加,不存在創(chuàng)建
df_empty.to_csv('數據.csv', mode='a', header=False, index=None, encoding='gb18030')
else:
df_empty.to_csv("數據.csv", index=False, encoding='gb18030')
return k_index
def main():
# 打開瀏覽器
# dr = webdriver.Firefox()
global dr
dr = webdriver.Chrome()
# dr = webdriver.Ie()
# # 后臺打開瀏覽器
# option=webdriver.ChromeOptions()
# option.add_argument('headless')
# dr = webdriver.Chrome(chrome_options=option)
# print("打開瀏覽器")
# 將瀏覽器最大化顯示
dr.maximize_window()
# 轉到目標網址
# dr.get("https://www.******.com/job_detail/?query=Python&city=100010000&industry=&position=")#全國
dr.get("https://www.******.com/c101010100/?query=Python&ka=sel-city-101010100")#北京
print("打開網址")
time.sleep(5)
k_index = 0#數據條數、DataFrame索引
flag_hot_city=0
for i in range(3,17,1):
# print('第',i-2,'頁')
# try:
# 獲取城市
close_windows()
hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
close_windows()
# hot_city_list[i].click()#防止彈窗,改為下面兩句
# element_hot_city_list_first = hot_city_list[i]
dr.execute_script("arguments[0].click();", hot_city_list[i])
# 輸出城市名
close_windows()
hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
print('城市:{}'.format(i-2),hot_city_list[i].text)
time.sleep(0.5)
# 獲取區(qū)縣
for j in range(1,50,1):
# print('第', j , '個區(qū)域')
# try:
# close_windows()
# hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
# 在這個for循環(huán)點一下城市,不然識別不到當前頁面已經更新了
close_windows()
hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
close_windows()
# hot_city_list[i].click()#防止彈窗,改為下面
dr.execute_script("arguments[0].click();", hot_city_list[i])
#輸出區(qū)縣名稱
close_windows()
city_district = dr.find_element_by_class_name("condition-district").find_elements_by_tag_name("a")
if len(city_district)==j:
print('遍歷完所有區(qū)縣,沒有不可點擊的,跳轉下一個城市')
break
print('區(qū)縣:',j, city_district[j].text)
# city_district_value=city_district[j].text#當前頁面的區(qū)縣值
# 點擊區(qū)縣
close_windows()
city_district= dr.find_element_by_class_name("condition-district").find_elements_by_tag_name("a")
close_windows()
# city_district[j].click()]#防止彈窗,改為下面兩句
# element_city_district = city_district[j]
dr.execute_script("arguments[0].click();", city_district[j])
#判斷區(qū)縣是不是點完了
close_windows()
hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
print('點擊后這里應該是區(qū)縣', hot_city_list[1].text)#如果是不限,說明點完了,跳出
hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
print('如果點完了,這里應該是不限:',hot_city_list[1].text)
hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
if hot_city_list[1].text == '不限':
print('當前區(qū)縣已經點完了,點擊下一個城市')
flag_hot_city=1
break
close_windows()
k_index = get_current_region_job(k_index)#獲取職位,爬取數據
# 重新點回城市頁面,再次獲取區(qū)縣。但此時多了區(qū)縣,所以i+1
close_windows()
hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
close_windows()
# hot_city_list[i+1].click()#防止彈窗,改為下面兩句
# element_hot_city_list_again = hot_city_list[i+1]
dr.execute_script("arguments[0].click();", hot_city_list[i+1])
# except BaseException as e:
# print('main的j循環(huán)-獲取區(qū)縣發(fā)生錯誤:', e)
# close_windows()
time.sleep(0.5)
# except BaseException as e:
# print('main的i循環(huán)發(fā)生錯誤:',e)
# close_windows()
time.sleep(0.5)
# 退出瀏覽器
dr.quit()
# p1.close()
if __name__ == '__main__':
main()
二、獲取到的數據如圖所示
三、數據分析的代碼
# coding=utf-8
import collections
import wordcloud
import re
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 顯示中文標簽
plt.rcParams['axes.unicode_minus'] = False # 設置正常顯示符號
def create_dir_not_exist(path): # 判斷文件夾是否存在,不存在-新建
if not os.path.exists(path):
os.mkdir(path)
create_dir_not_exist(r'./image')
create_dir_not_exist(r'./image/city')
data = pd.read_csv('數據.csv', encoding='gb18030')
data_df = pd.DataFrame(data)
print("
查看是否有缺失值
", data_df.isnull().sum())
data_df_del_empty = data_df.dropna(subset=['崗位'], axis=0)
# print("
刪除缺失值‘崗位'的整行
",data_df_del_empty)
data_df_del_empty = data_df_del_empty.dropna(subset=['公司'], axis=0)
# print("
刪除缺失值‘公司'的整行
",data_df_del_empty)
print("
查看是否有缺失值
", data_df_del_empty.isnull().sum())
print('去除缺失值后
', data_df_del_empty)
data_df_python_keyword = data_df_del_empty.loc[data_df_del_empty['崗位'].str.contains('Python|python')]
# print(data_df_python_keyword)#篩選帶有python的行
# 區(qū)間最小薪資
data_df_python_keyword_salary = data_df_python_keyword['薪資'].str.split('-', expand=True)[0]
print(data_df_python_keyword_salary) # 區(qū)間最小薪資
# Dataframe新增一列 在第 列新增一列名為' ' 的一列 數據
data_df_python_keyword.insert(7, '區(qū)間最小薪資(K)', data_df_python_keyword_salary)
print(data_df_python_keyword)
# 城市地區(qū)
data_df_python_keyword_location_city = data_df_python_keyword['地點'].str.split('·', expand=True)[0]
print(data_df_python_keyword_location_city) # 北京
data_df_python_keyword_location_district = data_df_python_keyword['地點'].str.split('·', expand=True)[1]
print(data_df_python_keyword_location_district) # 海淀區(qū)
data_df_python_keyword_location_city_district = []
for city, district in zip(data_df_python_keyword_location_city, data_df_python_keyword_location_district):
city_district = city + district
data_df_python_keyword_location_city_district.append(city_district)
print(data_df_python_keyword_location_city_district) # 北京海淀區(qū)
# Dataframe新增一列 在第 列新增一列名為' ' 的一列 數據
data_df_python_keyword.insert(8, '城市地區(qū)', data_df_python_keyword_location_city_district)
print(data_df_python_keyword)
data_df_python_keyword.insert(9, '城市', data_df_python_keyword_location_city)
data_df_python_keyword.insert(10, '地區(qū)', data_df_python_keyword_location_district)
data_df_python_keyword.to_csv("data_df_python_keyword.csv", index=False, encoding='gb18030')
print('-------------------------------------------')
def draw_bar(row_lable, title):
figsize_x = 10
figsize_y = 6
global list1_education, list2_education, df1, df2
plt.figure(figsize=(figsize_x, figsize_y))
list1_education = []
list2_education = []
for df1, df2 in data_df_python_keyword.groupby(row_lable):
list1_education.append(df1)
list2_education.append(len(df2))
# print(list1_education)
# print(list2_education)
# 利用 * 解包方式 將 一個排序好的元組,通過元組生成器再轉成list
# print(*sorted(zip(list2_education,list1_education)))
# print(sorted(zip(list2_education,list1_education)))
# 排序,兩個列表對應原始排序,按第幾個列表排序,注意先后位置
list2_education, list1_education = (list(t) for t in zip(*sorted(zip(list2_education, list1_education))))
plt.bar(list1_education, list2_education)
plt.title('{}'.format(title))
plt.savefig('./image/{}分析.jpg'.format(title))
# plt.show()
plt.close()
# 學歷
draw_bar('學歷', '學歷')
draw_bar('工作經驗', '工作經驗')
draw_bar('區(qū)間最小薪資(K)', '14個熱門城市的薪資分布情況(K)')
# -----------------------------------------
# 根據城市地區(qū)求均值
list_group_city1 = []
list_group_city2 = []
for df1, df2 in data_df_python_keyword.groupby(data_df_python_keyword['城市地區(qū)']):
# print(df1)
# print(df2)
list_group_city1.append(df1)
salary_list_district = [int(i) for i in (df2['區(qū)間最小薪資(K)'].values.tolist())]
district_salary_mean = round(np.mean(salary_list_district), 2) # 每個區(qū)縣的平均薪資 round(a, 2)保留2位小數
list_group_city2.append(district_salary_mean)
list_group_city2, list_group_city1 = (list(t) for t in
zip(*sorted(zip(list_group_city2, list_group_city1), reverse=False)))
#
# print(list_group_city1)
# print(list_group_city2)
plt.figure(figsize=(10, 50))
plt.barh(list_group_city1, list_group_city2)
# 坐標軸上的文字說明
for ax, ay in zip(list_group_city1, list_group_city2):
# 設置文字說明 第一、二個參數:坐標軸上的值; 第三個參數:說明文字;ha:垂直對齊方式;va:水平對齊方式
plt.text(ay, ax, '%.2f' % ay, ha='center', va='bottom')
plt.title('14個熱門城市的各區(qū)縣招聘工資情況(K)')
plt.savefig('./image/14個熱門城市的各區(qū)縣招聘工資情況(K).jpg')
# plt.show()
plt.close()
# -----------------------------------------
# 根據城市分組排序,
list_group_city11 = []
list_group_city22 = []
list_group_city33 = []
list_group_city44 = []
for df_city1, df_city2 in data_df_python_keyword.groupby(data_df_python_keyword['城市']):
# print(df_city1)#市
# print(df_city2)
list_group_district2 = [] # 區(qū)縣列表
district_mean_salary2 = [] # 工資均值列表
for df_district1, df_district2 in df_city2.groupby(data_df_python_keyword['地區(qū)']):
# print(df_district1)#區(qū)縣
# print(df_district2)#工作
list_group_district2.append(df_district1) # 記錄區(qū)縣
salary_list_district2 = [int(i) for i in (df_district2['區(qū)間最小薪資(K)'].values.tolist())] # 工資列表
district_salary_mean2 = round(np.mean(salary_list_district2), 2) # 每個區(qū)縣的平均薪資 round(a, 2)保留2位小數
district_mean_salary2.append(district_salary_mean2) # 記錄區(qū)縣的平均工作的列表
district_mean_salary2, list_group_district2 = (list(tt) for tt in zip(
*sorted(zip(district_mean_salary2, list_group_district2), reverse=True)))
plt.figure(figsize=(10, 6))
plt.bar(list_group_district2, district_mean_salary2)
# 坐標軸上的文字說明
for ax, ay in zip(list_group_district2, district_mean_salary2):
# 設置文字說明 第一、二個參數:坐標軸上的值; 第三個參數:說明文字;ha:垂直對齊方式;va:水平對齊方式
plt.text(ax, ay, '%.2f' % ay, ha='center', va='bottom')
plt.title('14個熱門城市的各區(qū)縣招聘工資情況_{}(K)'.format(df_city1))
plt.savefig('./image/city/14個熱門城市的各區(qū)縣招聘工資情況_{}(K).jpg'.format(df_city1))
# plt.show()
plt.close()
# ----------------------------------------------------
skill_all = data_df_python_keyword['技能']
print(skill_all)
skill_list = []
for i in skill_all:
# print(type(i))
print(i)
# print(i.split(", | ' | [ | ] | " | "))
result = re.split(r'[,' [, ] ]', i)
print(result)
# if type(i) == list:
skill_list = skill_list + result
print('++++++++++++++++++++++++++++++++')
# print(skill_list)
list_new = skill_list
# 詞頻統(tǒng)計
word_counts = collections.Counter(list_new) # 對分詞做詞頻統(tǒng)計
word_counts_top10 = word_counts.most_common(30) # 獲取前10最高頻的詞
# print (word_counts_top10) # 輸出檢查
# print (word_counts_top10[0][0]) # 輸出檢查
# 生成柱狀圖
list_x = []
list_y = []
for i in word_counts_top10:
list_x.append(i[0])
list_y.append(i[1])
print('list_x', list_x[1:])
print('list_y', list_y[1:])
plt.figure(figsize=(30, 5))
plt.bar(list_x[1:], list_y[1:])
plt.savefig('./image/技能棧_詞頻_柱狀圖.png')
# plt.show()
plt.close()
list_new = " ".join(list_new) # 列表轉字符串,以空格間隔
# print(list_new)
wc = wordcloud.WordCloud(
width=800,
height=600,
background_color="#ffffff", # 設置背景顏色
max_words=50, # 詞的最大數(默認為200)
max_font_size=60, # 最大字體尺寸
min_font_size=10, # 最小字體尺寸(默認為4)
# colormap='bone', # string or matplotlib colormap, default="viridis"
colormap='hsv', # string or matplotlib colormap, default="viridis"
random_state=20, # 設置有多少種隨機生成狀態(tài),即有多少種配色方案
# mask=plt.imread("mask2.gif"), # 讀取遮罩圖片??!
font_path='simhei.ttf'
)
my_wordcloud = wc.generate(list_new)
plt.imshow(my_wordcloud)
plt.axis("off")
# plt.show()
wc.to_file('./image/技能棧_詞云.png') # 保存圖片文件
plt.close()
四、學歷分析
五、工作經驗分析
六、14個熱門城市的各區(qū)縣招聘薪資情況
七、各城市各區(qū)縣的薪資情況
北京
上海
其余12個城市不再展示,生成代碼都一樣
八、技能棧
小結
到此這篇python怎么爬取招聘崗位數據的文章就介紹到這了,更多Python爬蟲實戰(zhàn)內容請搜索W3Cschool以前的文章或繼續(xù)瀏覽下面的相關文章。