變分編碼器是自動編碼器的升級版本,其結(jié)構(gòu)跟自動編碼器是類似的,也由編碼器和解碼器構(gòu)成。接下來小編帶來一篇pytorch如何實現(xiàn)變分自動編碼器的教程,希望能對各位讀者有所幫助。
這個例子是用MNIST數(shù)據(jù)集生成為例子
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 12 11:42:19 2018
@author: www
"""
import os
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms as tfs
from torchvision.utils import save_image
im_tfs = tfs.Compose([
tfs.ToTensor(),
tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) # 標準化
])
train_set = MNIST('E:data', transform=im_tfs)
train_data = DataLoader(train_set, batch_size=128, shuffle=True)
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20) # mean
self.fc22 = nn.Linear(400, 20) # var
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = torch.FloatTensor(std.size()).normal_()
if torch.cuda.is_available():
eps = Variable(eps.cuda())
else:
eps = Variable(eps)
return eps.mul(std).add_(mu)
def decode(self, z):
h3 = F.relu(self.fc3(z))
return F.tanh(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x) # 編碼
z = self.reparametrize(mu, logvar) # 重新參數(shù)化成正態(tài)分布
return self.decode(z), mu, logvar # 解碼,同時輸出均值方差
net = VAE() # 實例化網(wǎng)絡(luò)
if torch.cuda.is_available():
net = net.cuda()
x, _ = train_set[0]
x = x.view(x.shape[0], -1)
if torch.cuda.is_available():
x = x.cuda()
x = Variable(x)
_, mu, var = net(x)
print(mu)
#可以看到,對于輸入,網(wǎng)絡(luò)可以輸出隱含變量的均值和方差,這里的均值方差還沒有訓(xùn)練
#下面開始訓(xùn)練
reconstruction_function = nn.MSELoss(size_average=False)
def loss_function(recon_x, x, mu, logvar):
"""
recon_x: generating images
x: origin images
mu: latent mean
logvar: latent log variance
"""
MSE = reconstruction_function(recon_x, x)
# loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
KLD = torch.sum(KLD_element).mul_(-0.5)
# KL divergence
return MSE + KLD
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
def to_img(x):
'''
定義一個函數(shù)將最后的結(jié)果轉(zhuǎn)換回圖片
'''
x = 0.5 * (x + 1.)
x = x.clamp(0, 1)
x = x.view(x.shape[0], 1, 28, 28)
return x
for e in range(100):
for im, _ in train_data:
im = im.view(im.shape[0], -1)
im = Variable(im)
if torch.cuda.is_available():
im = im.cuda()
recon_im, mu, logvar = net(im)
loss = loss_function(recon_im, im, mu, logvar) / im.shape[0] # 將 loss 平均
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (e + 1) % 20 == 0:
print('epoch: {}, Loss: {:.4f}'.format(e + 1, loss.item()))
save = to_img(recon_im.cpu().data)
if not os.path.exists('./vae_img'):
os.mkdir('./vae_img')
save_image(save, './vae_img/image_{}.png'.format(e + 1))
補充:PyTorch 深度學習快速入門——變分自動編碼器
變分編碼器是自動編碼器的升級版本,其結(jié)構(gòu)跟自動編碼器是類似的,也由編碼器和解碼器構(gòu)成。
回憶一下,自動編碼器有個問題,就是并不能任意生成圖片,因為我們沒有辦法自己去構(gòu)造隱藏向量,需要通過一張圖片輸入編碼我們才知道得到的隱含向量是什么,這時我們就可以通過變分自動編碼器來解決這個問題。
其實原理特別簡單,只需要在編碼過程給它增加一些限制,迫使其生成的隱含向量能夠粗略的遵循一個標準正態(tài)分布,這就是其與一般的自動編碼器最大的不同。
這樣我們生成一張新圖片就很簡單了,我們只需要給它一個標準正態(tài)分布的隨機隱含向量,這樣通過解碼器就能夠生成我們想要的圖片,而不需要給它一張原始圖片先編碼。
一般來講,我們通過 encoder 得到的隱含向量并不是一個標準的正態(tài)分布,為了衡量兩種分布的相似程度,我們使用 KL divergence,利用其來表示隱含向量與標準正態(tài)分布之間差異的 loss,另外一個 loss 仍然使用生成圖片與原圖片的均方誤差來表示。
KL divergence 的公式如下
重參數(shù) 為了避免計算 KL divergence 中的積分,我們使用重參數(shù)的技巧,不是每次產(chǎn)生一個隱含向量,而是生成兩個向量,一個表示均值,一個表示標準差,這里我們默認編碼之后的隱含向量服從一個正態(tài)分布的之后,就可以用一個標準正態(tài)分布先乘上標準差再加上均值來合成這個正態(tài)分布,最后 loss 就是希望這個生成的正態(tài)分布能夠符合一個標準正態(tài)分布,也就是希望均值為 0,方差為 1
所以最后我們可以將我們的 loss 定義為下面的函數(shù),由均方誤差和 KL divergence 求和得到一個總的 loss
def loss_function(recon_x, x, mu, logvar):
"""
recon_x: generating images
x: origin images
mu: latent mean
logvar: latent log variance
"""
MSE = reconstruction_function(recon_x, x)
# loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
KLD = torch.sum(KLD_element).mul_(-0.5)
# KL divergence
return MSE + KLD
用 mnist 數(shù)據(jù)集來簡單說明一下變分自動編碼器
import os
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms as tfs
from torchvision.utils import save_image
im_tfs = tfs.Compose([
tfs.ToTensor(),
tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) # 標準化
])
train_set = MNIST('./mnist', transform=im_tfs)
train_data = DataLoader(train_set, batch_size=128, shuffle=True)
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20) # mean
self.fc22 = nn.Linear(400, 20) # var
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = torch.FloatTensor(std.size()).normal_()
if torch.cuda.is_available():
eps = Variable(eps.cuda())
else:
eps = Variable(eps)
return eps.mul(std).add_(mu)
def decode(self, z):
h3 = F.relu(self.fc3(z))
return F.tanh(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x) # 編碼
z = self.reparametrize(mu, logvar) # 重新參數(shù)化成正態(tài)分布
return self.decode(z), mu, logvar # 解碼,同時輸出均值方差
net = VAE() # 實例化網(wǎng)絡(luò)
if torch.cuda.is_available():
net = net.cuda()
x, _ = train_set[0]
x = x.view(x.shape[0], -1)
if torch.cuda.is_available():
x = x.cuda()
x = Variable(x)
_, mu, var = net(x)
print(mu)
Variable containing: Columns 0 to 9 -0.0307 -0.1439 -0.0435 0.3472 0.0368 -0.0339 0.0274 -0.5608 0.0280 0.2742 Columns 10 to 19 -0.6221 -0.0894 -0.0933 0.4241 0.1611 0.3267 0.5755 -0.0237 0.2714 -0.2806 [torch.cuda.FloatTensor of size 1x20 (GPU 0)]
可以看到,對于輸入,網(wǎng)絡(luò)可以輸出隱含變量的均值和方差,這里的均值方差還沒有訓(xùn)練 下面開始訓(xùn)練
reconstruction_function = nn.MSELoss(size_average=False)
def loss_function(recon_x, x, mu, logvar):
"""
recon_x: generating images
x: origin images
mu: latent mean
logvar: latent log variance
"""
MSE = reconstruction_function(recon_x, x)
# loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
KLD = torch.sum(KLD_element).mul_(-0.5)
# KL divergence
return MSE + KLD
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
def to_img(x):
'''
定義一個函數(shù)將最后的結(jié)果轉(zhuǎn)換回圖片
'''
x = 0.5 * (x + 1.)
x = x.clamp(0, 1)
x = x.view(x.shape[0], 1, 28, 28)
return x
for e in range(100):
for im, _ in train_data:
im = im.view(im.shape[0], -1)
im = Variable(im)
if torch.cuda.is_available():
im = im.cuda()
recon_im, mu, logvar = net(im)
loss = loss_function(recon_im, im, mu, logvar) / im.shape[0] # 將 loss 平均
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (e + 1) % 20 == 0:
print('epoch: {}, Loss: {:.4f}'.format(e + 1, loss.data[0]))
save = to_img(recon_im.cpu().data)
if not os.path.exists('./vae_img'):
os.mkdir('./vae_img')
save_image(save, './vae_img/image_{}.png'.format(e + 1))
epoch: 20, Loss: 61.5803 epoch: 40, Loss: 62.9573 epoch: 60, Loss: 63.4285 epoch: 80, Loss: 64.7138 epoch: 100, Loss: 63.3343
變分自動編碼器雖然比一般的自動編碼器效果要好,而且也限制了其輸出的編碼 (code) 的概率分布,但是它仍然是通過直接計算生成圖片和原始圖片的均方誤差來生成 loss,這個方式并不好,生成對抗網(wǎng)絡(luò)中,我們會講一講這種方式計算 loss 的局限性,然后會介紹一種新的訓(xùn)練辦法,就是通過生成對抗的訓(xùn)練方式來訓(xùn)練網(wǎng)絡(luò)而不是直接比較兩張圖片的每個像素點的均方誤差。
小結(jié)
以上就是pytorch如何實現(xiàn)變分自動編碼器的全部內(nèi)容,希望能給大家一個參考,也希望大家多多支持W3Cschool。