App下載

pytorch中F.avg_pool1d()和F.avg_pool2d()怎么使用?有什么區(qū)別?

猿友 2021-07-20 11:22:12 瀏覽數(shù) (3772)
反饋

在學習機器學習的時候我們會學習到F.avg_pool1d()和F.avg_pool2d()兩個函數(shù)。這兩個長得很像的函數(shù)在功能上有很多相似但又有一些區(qū)別,那么,F.avg_pool1d()和F.avg_pool2d()有什么區(qū)別呢?接下來的這篇文章告訴你。

F.avg_pool1d()數(shù)據(jù)是三維輸入

input維度: (batch_size,channels,width)channel可以看成高度

kenerl維度:(一維:表示width的跨度)channel和輸入的channel一致可以認為是矩陣的高度

假設(shè)kernel_size=2,則每倆列相加求平均,stride默認和kernel_size保持一致,越界則丟棄(下面表示1,2列和3,4列相加求平均)

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2)
m

tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.0000, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

假設(shè)kenerl_size=3,表示前3列相加求平均,后面的不足3列丟棄

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=3)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.],
         [1.],
         [0.],
         [1.],
         [1.]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.2500],
         [1.0000],
         [1.0000]]])

假設(shè)stride=1每次移動一個步伐

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [0.0000, 0.0000, 0.5000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000]]])
 
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.2500, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

F.avg_pool2d()數(shù)據(jù)是四維輸入

input維度: (batch_size,channels,height,width)

kenerl維度:(二維:表示width的跨度)channel和輸入的channle一致,如果數(shù)據(jù)是三維,則channel為1.(如果只寫一個數(shù)n,kenerl=(n,n))

stride默認和kenerl一致,這是個二維的,所以在height和width上均和kenerl一致,越界同樣丟棄。

跟cnn卷積一致

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4),stride=1)
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125, 0.8750],
         [0.8125, 0.8750]]])

如果求列的平均kenerl=(1,5),此時默認stride=(1,5)

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(1,5))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.4000],
         [1.0000],
         [1.0000]]])

如果求行的平均kenerl=(5,1),此時默認stride=(5,1),用卷積的概念取思考

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(5,1))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8000, 0.8000, 0.8000, 1.0000, 1.0000]]])

對于四維的數(shù)據(jù),channel默認和輸入一致

input=torch.randn(10,3,4,4)
m=F.avg_pool2d(input,(4,4))
print(m.size())
torch.Size([10, 3, 1, 1])

補充:PyTorch中AdaptiveAvgPool函數(shù)解析

自適應池化(AdaptiveAvgPool1d):

對輸入信號,提供1維的自適應平均池化操作 對于任何輸入大小的輸入,可以將輸出尺寸指定為H*W,但是輸入和輸出特征的數(shù)目不會變化。

torch.nn.AdaptiveAvgPool1d(output_size)
#output_size:輸出尺寸

對輸入信號,提供1維的自適應平均池化操作 對于任何輸入大小的輸入,可以將輸出尺寸指定為H*W,但是輸入和輸出特征的數(shù)目不會變化。

# target output size of 5
m = nn.AdaptiveAvgPool1d(5)
input = autograd.Variable(torch.randn(1, 64, 8))
output = m(input)

自適應池化(AdaptiveAvgPool2d):

class torch.nn.AdaptiveAvgPool2d(output_size)

對輸入信號,提供2維的自適應平均池化操作 對于任何輸入大小的輸入,可以將輸出尺寸指定為H*W,但是輸入和輸出特征的數(shù)目不會變化。

參數(shù):

output_size: 輸出信號的尺寸,可以用(H,W)表示H*W的輸出,也可以使用耽擱數(shù)字H表示H*H大小的輸出

# target output size of 5x7
m = nn.AdaptiveAvgPool2d((5,7))
input = autograd.Variable(torch.randn(1, 64, 8, 9))
# target output size of 7x7 (square)
m = nn.AdaptiveAvgPool2d(7)
input = autograd.Variable(torch.randn(1, 64, 10, 9))
output = m(input)

自適應池化的數(shù)學解釋:


小結(jié)

以上就是F.avg_pool1d()和F.avg_pool2d()有什么區(qū)別的全部內(nèi)容,希望能給大家一個參考,也希望大家多多支持W3Cschool。


0 人點贊